6 research outputs found

    Characteristics of different focusing antennas in the near field region

    Get PDF
    Focusing antennas are of interest in many application including microwave wireless power transmission, remote (non-contact) sensing, and medical applications. Different kinds of antennas such as array antennas, reflector antennas and Fresnel zone plate (FZP) antennas have been used for these applications. Here, first, a new scheme in designing focused array antennas with desired sidelobe levels (SLLs) in the near field region is presented. The performance of the large focused array antennas is predicted based on the knowledge of the mutual admittances of a smaller array. The effects of various focal distances on the near field pattern of these antennas are investigated. Then, electric field pattern characteristics of the focused Fresnel zone plate lens antennas in the near-field region are presented. The FZP antenna fed by a circular horn is implemented and the effects of various focal lengths on the near field pattern of this antenna are examined. It is shown that the maximum field intensity occurs closer to the antenna aperture than to the focal point and this displacement increases as the focal point moves away from the antenna aperture. The focusing properties of ultra-wideband (UWB) array antennas are also presented. Large current radiator (LCR) antennas are modeled by replacing the antenna with a set of infinitesimal dipoles producing the same near field of the antenna. LCR antenna arrays are used to provide high concentration of microwave power into a small region. It is shown that the defocusing effect occurs in pulse radiating antennas as well. Invasive weed optimization (IWO), a new optimization algorithm, is also employed to optimize the pulsed array antenna. In the attempt of optimizing the focused arrays, a new scenario for designing thinned array antennas using this optimization method is introduced. It is shown that by using this method, the number of elements in the array can be optimized, which yields a more efficient pattern with less number of elements. By applying this new optimization method to UWB arrays, the peak power delivered to a localized region can be increased

    Ultra-Wideband Transient Arrays: Focusing and Defocusing

    Get PDF
    Abstract-Some focusing properties of the ultra-wideband time-domain focused array antennas were presented. Large current radiators are considered as the elements of the antenna array. Several antenna arrays with different sizes and number of elements are modeled. It is shown that similar to narrow band antennas, the actual maximum field region shifts from the intended focus region towards the antenna aperture

    Optimizing Radiation Patterns of a Cylindrical Polarimetric Phased-Array Radar for Multimissions

    No full text

    FOCUSING PROPERTIES OF ULTRA WIDEBAND TRANSIENT ARRAYS

    No full text
    Abstract—Some new focusing properties of time-domain ultra wide band (UWB) focusing array antennas are presented. The large current radiator (LCR) is considered as the UWB antenna element. Each LCR is replaced by a set of infinitesimal dipoles modeling both the near field and the far field patterns of the antenna element, as well as the coupling between the elements. Several antenna arrays with different sizes and numbers of elements are modeled. It is shown that similar to narrow band antennas, the actual maximum field region shifts from the intended focus region towards the antenna aperture. 1
    corecore